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Symmetry properties of divergences of vector currents 

S Eliezert and P Singer$§ 
tDepartment of Physics, Imperial College, Prince Consort Road, London SW7, UK 
$Department of Physics, Carnegie-Mellon University, Pittsburgh, Pa 15213, USA 

MS received 17 November 1972 

Abstract. We propose to investigate the degree of validity of the octet dominance formu- 
lation of the partial conservation of vector currents, recently used by several authors. To 
this end, possible contributions transforming like a ‘27’ representation of the SU(3) group 
are assumed for the divergences of vector currents, in addition to the ‘octet’ part represented 
by scalar mesons. Their magnitude is investigated by solving the equations for the diver- 
gences of vector currents with the aid of a perturbation expansion in A(SU(3) breaking) and 
e’(SU(2) breaking). It is shown that ‘octet dominance’ for the SU(3) breaking of the diver- 
gences of vector currents can be safely assumed only for certain transitions, while somewhat 
higher ‘27’ contributions are encountered for other matrix elements as well as in the appro- 
priate SU(2)-breaking case. The Gell-Mann-Okubo mass formulae with electromagnetic 
corrections for baryons and for pseudoscalar mesons, the electromagnetic mixing angles 
and the Coleman-Glashow formulae are all reproduced in our solution, and in addition 
three new hybrid mass formulae are obtained. Finally, we discuss the domain of validity 
of the results emphasizing which of them turn out to hold for an arbitrary mixture of the 
usual electromagnetic hamiltonian and a tadpole contribution. 

1. Introduction 

It is well known (de Swart 1963, Clavelli 1969, Dashen 1969) that to a rather good 
approximation, strong and electromagnetic mass differences transform like an octet 
representation of SU(3). Specifically, for the hamiltonian matrix elements one has 
(de Swart 1963, Clavelli 1969) (c(iHI:,‘,h,lc()/(aiH~~~~~~a) equal to approximately 14 % 
for the 3’ baryon octet, 10 % for the pseudoscalar meson octet (or 20 % if a linear mass 
formula is used) and approximately 25% for the vector mesons. The appropriate 
figure for H e ,  is (de Swart 1963) for the baryon octet ( a l H L ~ ) l c t ) / ( a l H L ~ l a )  1 2 0 % .  
On the other hand, HL? gives to lowest order mR+ = mZO, and the observed mass differ- 
ence is due (to order e’) to the ‘27 term’. 

During the last few years, the assumption of the ‘partial conservation of vector 
current’ (PCVC) has been used by various authors to calculate processes to which scalar 
particles contribute, such as K , ,  decay (Nieh 1968, Mackey et a1 1968, Dahmen et al  
1968a, b, Arnowitt et a1 1969) or 9 weak decay (Eliezer and Singer 1969), as well as to 
obtain sum rules for masses, coupling constants and second class form factors (Marshak 
et a1 1966, Eliezer and Singer 1970, 1971, Schulke 1969a, b). 

The PCVC hypothesis has been implemented by retaining the scalar pole contribu- 
tion to appropriate dispersion relations (Nieh 1968, Mackey et a1 1968, Dahmen et a1 
1968a, b, Schulke 1969a, b) and more recently by assuming (Arnowitt et a1 1969, Eliezer 
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and Singer 1970, 1971) that the divergences of the vector currents are proportional 
to an octet of interpolating scalar fields. It is therefore of obvious interest to investigate 
the validity of the octet dominance of the matrix elements of the divergences of the 
vector currents, in particular in comparison with the much discussed octet enhance- 
ment of the SU(3)-broken hamiltonian. 

The divergences of the vector currents d,V; are related to the symmetry-breaking 
part of the hamiltonian density H,,(x, t )  by the following relation, which holds if H,,(x, t )  
does not contain derivatives (see eg Dashen and Weinstein 1969, Renner 1969) 

(1.1) 

where Fa@)  = J' d3x1/0(x, t )  is the vector charge. Thus, if an appropriate form is assumed 
for H,,(x, t) ,  the information on its matrix elements obtained from the physical masses 
can be translated by the use of equation (1 .1 )  into information on the matrix elements 
of 8,V;. The usual practice of PCVC is to assume d,V; - c,@, where Cp" is an octet of 
scalar fields and c, are constants. It is obviously desirable to check for possible contribu- 
tions from other representations and thus to verify the validity of the usual procedure, 
even before making the extrapolation in 4'. 

In this article we consider possible additional contributions to the divergences of 
vector currents, having '27' transformation properties, and we estimate their magnitude 
relative to the octet part. To this purpose, a method is developed to obtain sum rules 
for masses, taking these corrections into account. In the appropriate limits our sum 
rules reproduce the well known mass formulae. 

In order to test the possible deviation from octet dominance, we rewrite the defini- 
tion of the divergences of vector currents to include '27' contributions as follows : 

8, V,(X, t )  = - i[F"(t), HSB(x,  t ) ]  

a,I/,(AS = 0, AQ = 1 )  = fnN-m:N+q5nN+ + R ,  

2,Vp(AS = 1 ,AQ = 1 )  = i j i + m i + 4 K +  + R ,  

6,VJAS = 1,AQ = 0)  = i f ,om~04Ko+R3 

where and 4K are the renormalized field operators that create the particles with the 
spin, parity and isospin quantum numbers J p  = O f ,  l(nN) = 1 ,  Z ( K )  = f. .fs, where 
S = n,f ,  IC+ or KO, is defined through 

(1.5) 

In the limit of exact SU(2) the coupling constant f,, would vanish and f K +  = fKo, while 
in the limit of exact SU(3) one has f,, = f K  = 0. We also remark that the octet assump- 
tion for the scalar mesons implies the following sum rule : 

(1.6) f, + mK + --fKomio = jzN + mf, + . 

The octet part of the divergences is thus described by appropriate interpolating 
scalar fields. Although in the present work we do  not make explicit use of the scalar 
meson dominance, we use the PCVC formuiation of equations (1.2H1.4) for its con- 
venience for possible further applications. 

Our previous formulation of PCVC through dominance by scalar mesons (Eliezer 
and Singer 1970, 1971) is valid if the matrix elements of R are much smaller than the 
matrix elements of the scalar field operator terms. This possibility is investigated in 
this article for physical states in the vanishing momentum transfer region. 

(2n)3(240)1'2(~(4)~ V,IO> = it&, . 

2 
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The residual operator R can be written as the sum of two terms 

Ri  = S i + E i  (i = 1,2,3), (1.7) 
where Si and E i  are induced by the SU(3) and SU(2) symmetry breaking respectively 
and transform as the 27 representation of SU(3). 

Taking the usual octet transformation properties for the electromagnetic current, 
the 27 representation is the only one available for E i  to second order in the electro- 
magnetic coupling. More general assumptions for the electromagnetic interaction 
allow also 10, 10 contributions. Nevertheless, we disregard this possibility in view of 
the fact that the nonappearance of 10, fi is a necessary requirement for obtaining the 
Coleman-Glashow formula, which holds to a very good accuracy. 

2. Equations for divergences of currents 

In this section we establish sets of equations fulfilled by the matrix elements of the. 
divergences of currents, for both the octet of pseudoscalar mesons and the octet of 
baryons (for the detailed equations see Eliezer 1971). These equations will then be 
solved separately by a perturbative approach in the SU(3) and SU(2) symmetry-breaking 
parameters, namely 1 and e’ respectively. The relationship between the solutions will 
take the forms of hybrid mass formulae. 

The matrix elements of the vector currents VE between states of pseudoscalar 
mesons Pi or baryons Bi are given respectively by (we drop the octet symbol a) 

The requirements of nonexistence of pole singularities at q2 = 0 in (2.1), (2.2) relate 
F,(O) to F2(0)  and f2(0) to fl(0) as follows: 

F:”p2(0) = F ~ l ~ P 2 ( 0 ) ( m :  - mi)  (2.5) 

(O)(Ml - M 2 )  (2.6) f:iA(o) = f 7 i . B ~  

and we thus finally arrive at  the two sets of equations for the matrix elements of the 
divergences of vector currents : 

(2.7) (P2(q2)Iia,~(0)IPl(ql))q2 = 0 = F P p 2 ( o ) ( ~ i  - m:) 

(B2(q2)  t id, V,(o) IB (4 )>q2 = = f Y 2 ( o )  ( M 2  - ,). (2.8) 

In the next section, we solve these sets of equations to order O(A) + O(e2)  + O(Ae2), 
after expressing their left hand side with the aid of (1.2H1.4) and (1.7) and use of the 
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Wigner-Eckart theorem. In this context, we remember that the mass differences 
m: - m: or M ,  - M ,  are of order O(A)+ O(A2)+ O ( e 2 ) +  O(ie2)+ . . . . 

The consistency of the equations (2.7), (2.8) to order e2  requires that we take into 
account no-q and CO-A mixing (Dalitz and Von Hippel 1964, Matsuda et a1 1969). 
We thus define two mixing angles, 4 and 0 respectively, by the relations 

-sin$ cos4  

-sin6 cos6 

(2.9) 

(2.10) 

n', q', Z', A' being the SU(2) eigenstates. Thus, whenever no, qo, CO and A' appear in 
the matrix elements of equations (2.7) and (2.8) the expressions used are 

and 

cos6 s in6 )  (;J ~ iZ,V, 1 B ) 
-sin6 cosd 

(2.11) 

(2.12) 

3. Solution of the equations for divergences of currents 

3.1. General 

We find it convenient at this point to formulate our problem by considering the sym- 
metry-breaking hamiltonian H,, , which, under the conditions mentioned in the 
introduction, is related to d,V, by equation (1.1). The H,, embodying the assumptions 
outlined in the introduction is 

(3.1) 

g , ,  g , ,  are assumed to be of order 2, the SU(3) symmetry-breaking parameter, while 
ri, Pi, y i  are of the order of the SU(2) symmetry-breaking parameter. The notation is 
H$?I,13, where N refers to the irreducible representation to which the operator belongs. 

Using (1.1) and (3.1) one can re-express the right hand side of equations (1.2H1.4) 
as follows : 
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3.2. The pseudoscalar mesons system 

We proceed now to solve the set of equations (2.7). As the equations obtained are 
extensive and their explicit form is not needed in order to follow the argument, we shall 
only describe here our method of solution. 

The left hand side of (2.7) is expressed using (1.2H1.4) and (3.2H3.7) as well as the 
Wigner-Eckart theorem. For the right hand side we need to use to  the order we solve, 
only the SU(3) values of the F ,  and f l .  The equations are expressed to order 
O(A)+ O(e2)+ O(Ae2), after taking into account the electromagnetic mixing (2.11) and 
(2.12). We thus obtain a set of nine equations for the three transitions considered in 
equations (1.2)-(1.4), three for each. For easier orientation, we record here as an example 
the three equations obtained for dp?$(AS = 0, AQ = 1 )  : 

J&Bgd:- J 3 B Z 7 d z 7  = (mio-m:+) 
J $ y Z 7 d z 7  = J2(m:+ -mno) 2 

J@ad," + J&,/327d27 = J 2  tan +(m,2 -m:). 

In the last equation above, there is no need to identify the pion charge as 4 is of order 
Ote2) and the explicit pion charge would appear in this equation only if keeping terms 
to  second order in (SU2),-symmetry breaking, that is O(e4). There is likewise no need 
to distinguish between mg0 and m,-the mass before the electromagnetic mass shift. 
We also point out that the second equation gives directly the magnitude of the A I  = 2 
contribution to dpVp(AS = 0, AQ = 1) induced by 

(noldpVp(AS = 0, AQ = 1)ln') = J $ y 2 7 d 2 7  = J2(m:+ -m$) = 18.4 x 

namely 

(GeV)'. 

(3.10) 

Neglecting the SU(2) breaking, the set of nine equations reduces to a set of two 
equations for the two unknowns g,d,8 and g Z 7 d z 7 ,  whose solution is? 

g8d,8 = Jg2m: + mi - 3m:) = 0.462 (GeV)' 

g27d27 = J&(4m: - 3mi - m,2) = 0.024 (GeV)'. 

(3.1 1 )  

(3.12) 

t The sign 'c is used in the formulae in which the average mass of the SU(2) multiplet is employed for the 
numerical calculation, that is before solving the equations with SU(2) breaking included. 
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In the limit of vanishing '27' contribution, the Gell-Mann-Okubo mass formula results 
from (3.12). 

We are now in the position to express the relative contributions of '8' and '27' to a ~ / A s = l  , which turns out to be 

(3.13) 

where (aV)fs=l*nK = - (n~LJpVp~K)fs=l. On the other side, for the r]-K transition 
(av)fs= 1 - 6  = - (r]lapVJK)fs"=' one has 

(3.14) 

We can now use the solution (3.11), (3.12) to rewrite our original set of equations 
as an homogeneous set to order O(e2) and O(Ae2) for the general case of both SU(3) 
and SU(2) breaking. In addition to the separate equation (3.10) which gives us directly 
y27d27 we find that by rearrangement we obtain only four more independent equations 
for the eight unknowns a8d:, Ci27d27, m:, m i ,  mi, 4, p8d,8 and /?27d27.  The fact that 
there are finally only five independent equations is related to the occurrence of only 
five independent mass differences for the set of equations (2.7). The five independent 
equations are (3.10) and the following four equations: 

(3.15) 

(3.16) 

(3.17) 

mio-mi .  = 2J3 tan 4(mi-m:)-,/+=J?8d,8-4Jfp27d27 

mio - m i  + = ,/&pad," - J3& 7d2 

mio + m i  + - 2mi - 2(mi0 - mi)  = - J&a8d," + 6J&a2,dZ7 

mio + m i  + - 2mi + 2{ m: - (4m:o + 3m: + )} = 3 J&a8d," + 2J&a2 7d2 '. 
(3.18) 

In order to obtain a solution, we must resort to some further relations between 
the various a, p and y. A natural assumption is to use U spin invariance of the SU(2) 
breaking interaction. In doing so, for both the '8' and '27' contributions one obtains 

p 8  = J3'83 p 2 7  = J3a.27 7 2 7  = J5u27. (3.19) 

In the last section, we shall discuss some other pobsibilities and their solutions. 
The three conditions (3.19) are not yet sufficient for obtaining a complete solution 

for the eight unknowns in equations (3.15H3.18). We choose therefore to treat mi,- mi 
as a known quantity in solving the equations and as it will be immediately apparent, 
its knowledge is in fact not needed in order to obtain the relations of interest here 
(Brown et al 1969)t. Using (3.19) with (3.15H3.18) we get the solution 

(mio - m i  +)  + (mi+ - m:o) 
J 3 ( 4  - 4) t a n 4  = = 0.01 1 & 0.001 (3.20) 

a8d,8 = , /y{(m$o-mi.)+3m:.  -m:o)} = (46.2+ 1.5) x 

a2,dZ7 = 2J&(m5+ - m 1 )  = ( 6 . 7 f 0 . 0 ) ~  10-4(GeV)2 

(GeV)' 
(3.21) 

(3.22) 

t These authors estimate the electromagnetic r~ mass shift using vector meson dominance of the hadronic 
electromagnetic current which gives mn0 - m,, U - 1 MeV. 
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mi  = @mi0 + m i  +)-+(MI+ - mIo)- (mio - m i )  

m;T = 32m: + + m 5 )  + $(mio - m i  +) - (mio - mi) .  

(3.23) 

(3.24) 

As it is obvious from (3.20)-(3.24), the value of m, does not appear in the quantities of 
interest (3.20H3.22). Furthermore, from (3.23) and (3.24) and the Okubo-Gell-Mann 
mass formula which obtains in (3.12) when g27 = 0 we deduce the mass formula with 
electromagnetic corrections included? : 

(3.25) 

Our formula agrees with the derivation of Dalitz and Sutherland (1965% b) but not 
with Okubo's suggestion (Okubo 1964) of using neutral masses only. For the mixing 
?-no angle we get the same result as other authors, who obtain it (Okubo and Sakita 
1963) by diagonalizing the q-n mass matrix. 

The relative contributions of '8' and '27' to a,V,(AS = 0,AQ = 1) transitions are 
now obtainable 

2(mi+ +mio)-(2mf+ -m,20)-3m$ = 0. 

(3.26) 

3.3. The baryon system 

In this case we have to solve the set of equations (2.8). The same procedure as described 
in 6 3.2 is being used, therefore we omit repeating the description of the various steps. 
Writing the equations for the transitions (1.2H1.4) we obtain a set of seventeen equa- 
tions. Our first step is to neglect SU(2) breaking and then the set of equations reduces to 
three independent equations for g&, g8D,8 and g2,D27, whose solution gives 

(3.27) 

(3.28) 

(3.29) 

From these equations we obtain the contributions of '27' and '8' to the matrix elements 
of d,V,(AS = 1) as follows : 

g8@ = @(mN - ma) N - 530.6 MeV 

g& = J$(m,+ mN + m, - 3m,) z - 130.4 MeV 

g27D27 = J&2mN+2ma-3m,-m,) N -9.6MeV. 

(3.30) 

(3.31) 

t It should be clear q is taken here as the member of the octet as we do not specifically treat the singlet-octet 
mixing. Inclusion of q-xo mixing, in addition to the '27' breaking, would result in too large a number of 
unknowns and our equations would then be undetermined. In fact, to the best of our knowledge, there is no 
satisfactory way of obtaining the separate effects of these two kinds of breaking, if both are allowed to be 
present. 
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where (8V)ps=1 ,hA = - (Nla,V,lA)fs"". The magnitude of all other possible AS = 1 
transitions lies between the above two extremum values. 

We return now to the original set of seventeen equations after inserting the solutions 
(3.27)-(3.29), and we are dealing now with a homogeneous set of equations to order 
e2 and ].e2. The five equations related to the AS = 0, AQ = 1 transitions allow us to 
solve directly for 

p8D: = d$(m,+ -m,-) = (-9.S-lO.2) MeV (3.32) 

(3.33) 727D2' = d/(m,- +m,- -2mXo) = ( 1 . 1  kO.1) MeV 

as well as to obtain one sum rule 

m,- -m,- = m,-m,+m,- -inEO. (3.34) 

which is the well known Coleman-Glashow relation (Coleman and Glashoh 1961). 
We then find that the rest of the equations can be reduced to five independent equations 
for the remaining eight unknowns m N .  m,, mE. m,. a2,D2'. r8D,8, P2,Dz7, 0 as follows 

4'3p8D,8+y&b27D2- = - 2 tan U(m, - m,) (3.35) 

-d&p8D,8 + ,,'3P2.D2 _1 = mp - m, +)(m,- - m, + )  (3.36) 

,/-% 10 8 D 8 +  s v 2  1% 8 D8  A +22/i$i15r27D2i = {2n1,-4(m,- +m,- +rn,o); +(m,+nz,-2mN) 
(3.37) 

V l O  / l y  8 D 8 - d &  s 2 8 D8-2v/a2,D27 A - - 2(m,O-m,)+ { 2 m - ( m , + m n ) ]  (3.38) 

J'x 1 0 8 s  D8+JLci 2 8 ' 4  D8 = 2(m,0-m,)+{2m,-(m,- +mEo)j.  (3.39) 

In order to solve these equations we make the assumption of (SU(2))" invariance 
implying relations (3.19). Although the structure of our equations does not allow us 
to calculate m,, its value is not needed to obtain the relations of interest. The solution is : 

(3.40) 

a& = ./9{(mn-mp)+&(7m,+ -3m,- -4mXo)) = ( -2 .42 f0 .13 )  MeV (3.41) 

mh = ;(m, + mp) + &(m, - + 2mro - 3rn, + + mEo - mg-) - (mA0 - in,,) (3.42) 

m, - 2 -  = +mEo)+&(m,+ +2mZo-3m,- +m,-m,)-(m,o-m,,) (3.43) 

(3.44) 

- - (3.45) 

m, = +(m, + + inyo + m, ~ ) + +(m, - inp + mEo - mE - - (mAo - m,) 

3(m,- -m,+) 10(mn-m,)+(7m,+ -3m,- -4mX0) 
inE - mN mE + mN + m, - 3m, 

Our solution for tan 6, agrees with that of Dalitz and von Hippel (1964). Combining 
equations (3.42)-(3.44) by using the Gell-Mann-Okubo mass formula which obtains 
in (3.29) if g2,D2' = 0, we obtain the mass formula for the baryon octet with electro- 
magnetic corrections included, namely 

(m, + mp) + (ms - + mEo) - (m, + + m, - - mzo) - 3mAo = 0. (3.46) 
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This expression agrees with that previously derived by Nauenberg (1964). Concerning 
now the contribution of ‘27’ to the AS = 0, AZ = 1 transitions, we have 

(3.47) 

where ( a V ) ~ s = o - N  - = (plc3,V,/,ln)i. The similar ratio for transition between z- and 
zo states is 8%. Other transitions, involving also AI = 2 are calculable but of less 
interest concerning the PCVC formulation. In addition we derive a new sum rule given 
in equation (3.45), where using the experimental masses one has (6.6k0.3) x lo-’ for 
the left hand side and (12.0 f0.6) x lo-* for the right hand side. 

4. Summary and discussion 

In this work, we have assumed that the contributions to the divergences of vector 
currents come from an octet of scalar mesons as well as from additional possible ‘27’ 
contributions, our aim being to check the validity of the usual PCVC assumption. The 
equations obtained for the matrix elements of the divergences of current between 
single-particle states at zero momentum transfer ((2.7) and (2.8)) were solved in a per- 
turbation approach to order I and e’. As contributions from higher order terms were 
neglected, our conclusions on the relative magnitudes of ‘8’ and ‘27’ contributions to 
symmetry breaking hold only if this is a valid framework. We summarize now the 
results obtained in the previous sections. 

(i) The relative contributions of ‘27’ and ‘8’ are given in equations (3.13), (3.14), 
(3.26) for the meson system and in equations (3.30). (3.31), (3.47) for the baryon system. 
It appears that octet dominance is a fair approximation for both SU(3) and SU(2) 
breaking in both systems, although sometimes the ‘27’ contributions are quite significant, 
and this already at q‘ = 0. 

(ii) Our solution gives at the same time the values of the mixing angles for v-no 
and CO-A (equations (3.20) and (3.40) respectively), in agreement with previous deriva- 
tions. 

(iii) Assuming negligible SU(3) breaking ‘27’ contribution, insertion of our solutions 
into the Gell-Mann-Okubo mass formulae thus obtained (equations (3.12), (3.29)) 
leads to Gell-Mann-Okubo mass formulae with electromagnetic corrections included, 
namely equations (3.25) and (3.46). These equations are thus shown to hold in the 
presence of ‘8’ and ‘27’ breaking for the electromagnetic interaction. It should, however, 
be remembered that we have used U spin invariance of the SU(2) breaking interaction 
in our derivation. 

(iv) Two additional relations are obtained within the framework of our solution. 
The Coleman and Glashow (1961) relation, equation (3.34), which is derived in the 
presence of ‘27’ breaking for both the SU(3) and SU(2) interactions, and the relation 
(Coleman and Glashow 1961) 

mZo = +(m,+ +m,-) (4.1) 

which obtains (equation (3.33)) if the ‘27’ contribution to the SU(2)-breaking inter- 
action vanishes and independently of the presence of similar contributions in the 
SU(3)-breaking interaction. 

The use of the same general symmetry-breaking hamiltonian (3.1) for both the meson 
and baryon systems allows us to derive also mass formulae of the type named ‘hybrid’ 
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by Coleman and Glashow (1964). Equating appropriately the ratios of a8D~/g,D2, 
a8D,8/g8D,8, a2,D27/g2,D27 which we obtained for the baryon system to those ofa,d,8/g8d,8, 
a27d27/g2,d27 of the meson system we obtain three mass formulae 

(4.2) 

(4.4) 

The comparison of equations (4.2) and (4.3) produces our previous sum rule given in 
equation (3.45). Using the experimental masses, we find (4.2) to be exacl within the 
experimental error. For (4.3) one has ( 3 . 3 f O . l ) ~  for the left hand side and 
(6.0k0.3) x for the right hand side. These are very remarkable results. As it was 
already stressed by Coleman and Glashow (1964) who previously derived hybrid 
formulae of somewhat less impressive validity, a priori these formulae might fail by 
order of magnitude. The formulae of Coleman and Glashow differ from ours as theirs 
were derived within the more limited framework of the tadpole model. 

In our third hybrid formula (4.4) one has for the left hand side (4.2f0.0) x lo-’ 
and for the right hand side (-4.35f0.14) x The disagreement here is not surpris- 
ing and is most likely due to our neglect of q-X mixing. In our solution, the denominator 
of the left hand side of (4.4) is attributed wholly to ‘27’ breaking (see equation (3.12)), 
while inclusion of q-X mixing can easily change the sign of the ‘27’ contribution. 

It should be stressed that from the conclusions summarized above, only those 
under (i) refer directly to the PCVC assumption. The results (ii), (iii) and (4.1) are of 
more general validity and were obtained using the symmetry properties listed and the 
perturbation formulation. The results (4.2) and (4.3), although a direct result of PCVC, 
would also follow in any model which requires the use of the same hamiltonian (3.1) 
for both the meson and baryon system. The latter requirement leads then also to (4.4). 

Finally, we should like to discuss to what extent some of our results are related tg 
the set of relations (3.19). 

Firstly, the Coleman-Glashow tadpole model results (Coleman and Glashow 
1964) are reproduced by assuming ag = a27 = f 1 2 7  = = 0, f18 # 0. It is possible to 
obtain Gell-Mann-Okubo type formulae with electromagnetic corrections also in this 
case, however, due to the lack of the ‘27’ contribution they read 

2(mi + + mio) - m,2 - 3m,Z = O 

and 

(m, + mp) + (mE- - mEo) - mzo - 3m,, = 0. 

Secondly, if we make the assumption (3.19) except the relation f l g  = ,/3cr8, that is, 
we leave a g ,  p8 independent, we can still obtain the mass formulae (3.25), (3.34) and 
(3.46). This shows these results to be valid for an arbitrary mixture of the ‘usual’ electro- 
magnetic hamiltonian and tadpole contributions. Likewise, the results for the angles 
8,4 still hold for such mixture. Furthermore the essential conclusions on the magnitudes 
of ( 8 V )  are unchanged if one assumes cr8 = 0, that is, tadpole + ‘27’ contributions only. 
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In concluding, we emphasize that our method enables one to study the effects of 
SU(3) and SU(2) breaking within a unified formalism and is transparent enough to 
allow one to investigate easily on the domain of validity of the various formulae obtained. 
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